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The problem of navigating in and interacting with an 

unstructured environment presents challenges to 

traditional learning and control approaches.  However, 

the nature of emergency response situations requires that 

autonomous robots’ performance be robust to unmodeled 

environments and unexpected challenges.  One approach 

to providing this capability is presented here: S-Learning.     

S-Learning, an experience-based learning algorithm, 

is implemented in the control of a seven degree-of-

freedom robotic arm.  S-Learning stores sequences of 

discretized (discrete in time), quantized (discrete in 

magnitude), and categorical (uninterpreted) sensor data 

and actuator commands.  Handling the data in this way 

removes explicit models about the environment, robot 

kinematics, dynamics, and structure.  Instead, a 

bootstrapped model is generated on the fly by observing 

sequences of sensory and command events.  S-Learning is 

based on a neuro-psychological model of learning and 

movement control in humans and seeks to mimic the 

strategies used by the brain to solve this problem.  

 

I. INTRODUCTION 

 

Emergency response environments are rarely well-

characterized, level, and free from obstruction.  The 

ability of an autonomous robot to handle novel 

environments is essential to robust performance in an 

emergency situation.  Additionally, the very 

environmental hazards that require robotic intervention 

(e.g. unstable rubble, sharp debris, explosive materials, 

radiation) can damage the robot.  Ideally, robot 

responders would be robust to failed sensors, frozen 

actuators, misaligned cameras, and joint obstructions to 

the greatest degree possible.  This work describes a robot 

control algorithm designed to achieve this goal. 

The field of “learning to learn,” also termed 

generalization or bias learning, takes machine 

performance a step further than many learning 

algorithms.
1
  Generalization algorithms seek to improve 

system performance not just on tasks for which the 

systems have explicitly trained, but also on novel, 

unrelated tasks.  Humans are often able to learn a task 

after only one or two exposures due to the ability to 

generalize from previously learned tasks.  Generalization 

algorithms attempt to imbue automated systems with this 

same ability.  Common approaches include connectionist 

networks,
2,3
 statistical (including Bayesian, memory-

based, and Markovian) methods,
4,5,6

 dimensionality 

reduction,
7
 and modified reinforcement learning 

techniques.
8,9
  Within this set of generalization 

algorithms, a subset is explicitly biologically-motivated.  

These mimic the human brain, which serves as an 

existence proof for solutions to daunting perception and 

control problems.  S-Learning falls into this category.   

 

I.A. Relation to Temporal-Difference techniques 

 

S-learning is a variant of temporal-difference (TD) 

learning.  It is superficially similar to Q-learning,
10
 

another TD algorithm, but involves sequences of discrete 

events (hence the S).  TD algorithms are typically 

effective at discovering optimal sequences of actions in 

unknown environments.  However, existing algorithms 

only address the static TD problem, in which the states 

that result in reward or punishment are fixed.  This is 

equivalent to a control system that has a fixed goal that 

does not vary over time.  And while multiple instances of 

a static TD algorithm, such as Q-learning, can be 

employed to account for multiple goal states, the 

experience gained while training one does not transfer to 

others in a straightforward way.  Such an approach 

typically requires a separate training period for each 

instance of the algorithm.  Even when this multiple-

instance approach is successful, it still does not aid the 

system in reaching unfamiliar goal states. 

The distinguishing characteristic of S-learning is that 

it continually records recurring patterns to build a library 

of past experiences.  This library allows a goal-seeking 

agent to piece the patterns together to form a complete 

path to a goal.  The strength of this approach is that the 

goal can be any previously-visited state, not just one or a 

few that were hard-coded from the start.  Thus S-learning 

can also handle changing goals, multiple goals, and even 

conflicting goals and provides a potential solution to the 

dynamic TD problem. 

 

I.B. Relation to Markov Models 

 

In an S-Learning sequence library, a set of sequences 

of length two can be accurately represented in a Markov 



model.  The likelihood of transitioning from state A to 

state B can be inferred from the sequence set and could 

alternatively be represented in matrix form.  Similarly, 

longer sequences could be represented as higher-order 

Markov models.  It is accurate to describe an S-Learning 

sequence library as a shorthand way of representing a 

series of Markov models of order one to order N-1, where 

N is the maximum sequence length.  The advantage of a 

sequence library is that it is concise.  A first order Markov 

model in a system with M possible states can be 

represented by a M x M matrix, a second order Markov 

model by a M
 2
 x M matrix, and an N-1 order Markov 

model by a M
 N-1

 x M matrix.  For the system simulated in 

this paper, in which N = 7 and M =  2
4141

, this 

representation quickly becomes computationally 

burdensome.  In this sense, a sequence library is a sparse 

matrix coding for a multi-order Markov model. 

 

II. METHOD 

 

Note:  A description of the S-Learning algorithm has 

been previously published, e.g.
 11
, but is briefly presented 

here for clarity.   

Initially, the controller has no experience on which to 

draw.  In simulation, the S-Learning algorithm issues 

random commands until the goal is achieved, at which 

point it resets the simulation and attempts to complete the 

task again.  Each time the goal is achieved, the sequence 

of states (sensor readings and commands issued) leading 

up to the goal are stored in a sequence library.  Each 

sequence can be envisioned as a trail of discrete states that 

result in a goal.  During future attempts, each state 

encountered during exploration is compared against 

previous successful state-trails.  If there is a sufficiently 

close match, S-Learning issues the same sequence of 

commands that had previously proved successful. 

 

II.A. Architecture 

 

S-Learning is at the core of a biomimetic Brain-

Emulating Cognition and Control Architecture (BECCA, 

Fig. 1).  BECCA consists of an Agent, a Planner, a World, 

and an S-Learning Engine, each of which is briefly 

described below. 

 

II.A.1. Agent 

The Agent sets goals for the system.  The goals are 

expressed in terms of the sensory state information 

available from the World.  Goals can be a specific state, a 

set of states, or a portion of a state.  Multiple, even 

conflicting, goals can exist.  Goals can change over time, 

and the Agent can use new state information to decide 

when and how to change them.  The current set of goals is 

available for use by the Planner. 

Fig. 1.  Brain-Emulating Cognition and Control 

Architecture (BECCA), featuring S-Learning: a block 

diagram representation.  The S-Learning algorithm is used 

as an engine to bootstrap a model of the World.  This 

model is referenced by the Planner and uses new state 

information to refine its World model in order to achieve 

goals provided by the Agent. 

 

 

II.A.2. Planner 

The Planner determines which (if any) actions to take 

at any given point in time.  It takes in goals from the 

Agent and current state information to inform its 

decisions.  The Planner queries the S-Learning Engine in 

order to predict the results of possible courses of action.  

Exploratory actions are also considered, particularly if the 

current state is unfamiliar and the S-Learning Engine 

cannot predict a path to a goal state.  After a course of 

action is determined, the Planner issues commands to the 

World and reports those actions in a state vector. 

 

II.A.3. World 

The World is the external system that is being learned 

and controlled.  It is analogous to the Plant and 

environmental disturbances in classical control system 

formulations.  The World can either be simulated or 

instantiated in hardware, but in either case, the only 

information it provides back to the rest of BECCA is 

through its sensors.  In simulations, BECCA does not 

have direct access to the World's internal and state 

variables. 

 

II.A.4 S-Learning Engine 

The S-Learning Engine uses the regularly-updated 

stream of state information to bootstrap a model of the 

World.  There is no explicit model, assumed dynamics, or 

implied structure.  Instead, the S-Learning Engine 

observes repeated state sequences, particularly those that 

result in a goal state.  These state sequences are stored in 

a library, which is referenced by the Planner during action 

planning.  The S-Learning Engine also keeps track of the 

sequences that the Planner selects as action plans.  If a 

sequence leads to a goal, as predicted, it is reinforced by 

weighting more heavily in the sequence library.  If a 

sequence fails to lead to a predicted goal, its weighting in 

the library is reduced.  After a number of failed 



predictions, a sequence becomes sufficiently weak that it 

is removed from the library. 

 

II.B. S-Learning Algorithm 

 

S-Learning provides a single mechanism for handling 

learning, memory, and prediction in BECCA.  The 

learning and memory behavior of S-Learning emerge 

from the way new states are incorporated into the 

bootstrapped world model.  Initially, the sequence library 

has no prior experiences and contains no state sequences.  

When a goal state is achieved (presumably though the 

exploratory efforts of the Planner) the sequence of events 

leading up to the goal are stored in the library. 

Control in S-Learning is straightforward.  All 

sequences that contain the most recently observed state(s) 

and terminate in a goal state are candidates for plans.  The 

Planner selects one plan from the candidate set (if there is 

more than one) on the basis of some criterion, say 

distance to goal or past success rate.   

Other, more sophisticated control methods based on 

the sequence library are possible as well.  For instance, 

daisy-chaining sequences together, creating trees of 

possible plans, would allow the Planner to create novel 

plans and generate a series of sub-goals. 

If the Planner finds an appropriate sequence from the 

library to serve as a basis for a plan of execution, then it 

executes the sequence of commands contained in that 

sequence.  The planner has an expectation that a goal will 

be achieved at the end of that sequence.  If a goal is not 

achieved when expected, that sequence of events is 

appended to the library, allowing future prediction of the 

same failure. 

If a goal is achieved when expected, then the 

successful sequence is compared against the sequence 

library.  If the observed sequence is significantly different 

from any sequence in the library, the observed sequence 

will be appended to the library.   

 

II.C. Simulation 

 

S-Learning was implemented in a simulated seven 

degree-of-freedom robot arm, based on physical 

PowerCube hardware (Amtec GmbH, Germany).  

MATLAB (Mathworks, Natick, MA) served as the 

computation engine for the simulation.  The robot 

consisted of six serial rotary links, which terminated in a 

parallel-finger gripper.  (Fig. 2)  The robot was mounted 

on a table, within reach of a salt shaker-sized block.  

The simulation consisted of two parts, a physical 

contact model and a visual representation.  In both cases, 

each link of the robot was treated as a rigid body, and its 

position relative to the other links was described 

completely by the kinematic constraints and position of 

each joint.   Due to the high mechanical impedance and 

non-backdrivability of the joints, links were considered to  

 
Fig. 2.  The PowerCube robot arm a) in a photograph and 

b) in an image captured from the MATLAB simulation.  

 

have no inertia; inertial effects were negligible in 

determining movement dynamics.  As a result, the set of 

seven joint positions provided a complete state 

description of the arm.  The visual representation of the 

model showed the configuration of the arm in the current 

state in relation to the target block. 

The physical contact model used of a number of 

discrete spheres to represent the physical volume 

occupied by each rigid link.  When the contact spheres 

from one link impinged on those of another, contact 

forces were generated.  These forces were computed over 

the entire link and propagated, link by link, down the 

kinematic chain to the base.  If the forces or torques at 

any given joint exceeded a threshold in the direction of 

that joint’s movement, they prevented the joint from 

moving against that load.  The net effect of this was that 

the arm was not capable of driving its gripper into the 

table, or of “crushing” the target block. 

Discrete commands were issued to each joint 

consisting of a position (angle) step in one of 33 

magnitudes.  This yielded 33
7
 (>10

10
) possible commands.  

The commands were checked to ensure that they did not 

attempt to drive any joint past its position limits.  This 

approach was motivated by the physical hardware; 

discrete position commands are also the accepted 

command format for the actual PowerCube arm.  When a 

command was issued, a small amount of stochastic 



command noise was added, resulting in a non-

deterministic system.  This jitter provided a means of 

exploring a local neighborhood of the state space.  In 

addition, when a sequence of commands was being 

executed, two subsequent commands would, on random 

occasions, be executed simultaneously.  This 

“carelessness” served to drive learned sequences toward 

their optimal length.  If a learned sequence could be made 

shorter, it eventually would be.  

 

II.C.1. Handling sensory information 

 

The vector of sensory information supplied to the 

World Model contained joint position, a “goal achieved” 

flag, and coarse vision from a fixed overhead camera.  

(Table I)  All of the sensor data used in simulation is 

readily available on the physical robotic hardware 

platform.  In all, there were over 4000 sensor channels 

feeding information to the S-Learning Engine at each time 

step.  Each sensor channel carried a 1 (signifying 

“active”) or a 0 (signifying “inactive”), making them 

superficially similar to the afferent neurons that supply 

sensory information to the brain.   

 

Table I.  Sensory Data Channels 
Sensory  

Modality 

Number of 

Channels 

Vision: plan view of table 2500 

Position: joint 1 600 

Position: joint 2 300 

Position: joint 3 200 

Position: joint 4 200 

Position: joint 5 200 

Position: joint 6 100 

Position: joint 7 40 

Flag: goal achieved 1 

Total 4141 
The fact that S-Learning does not have a set 

interpretation of its sensory information means that goals 

were required to be expressed in terms of raw sensor data.  

In the case of the PowerCube robot arm simulation, the 

goal state was considered achieved when the gripper was 

trying to close, but couldn’t (i.e., there was significant 

positive current flowing to the actuator and significant 

distance between the two fingers).  In terms of the robot’s 

simple set of sensors, this constituted a successful 

gripping of the target.  In the simulated environment, 

there was only one object within the robot’s workspace 

that could prevent the fingers from closing together—the 

target block.  If there had been a large number of 

objects—if the target had been located on top of a pile of 

other objects, for example—then additional sensors would 

have to be consulted to determine whether the task had 

been successfully achieved.  But in this case (by design), 

the sensors were adequately suited to the task. 

With a sensory state space of 2
4141

 (>10
1240

) possible 

states, exhaustive exploration of the space was 

prohibitive.  A random walk through the state space was 

also unlikely to reach the target in reasonable time.  Two 

strategies were employed to handle the enormity of the 

state space.  First, a model-independent distance metric 

for the space was used.  For any two states, the fraction of 

active channels that they shared determines their 

similarity.  More specifically, the similarity, σ, between 

two states, A and B, was given by the number of shared 

active channels, NS, divided by the least number of active 

channels of the two states, min(NA, NB). 

   

),min( BA

S

NN

N
=σ    (1) 

 

This similarity measure yielded a 0 if none of the 

channels were shared, and a 1 if all the channels were 

shared or if the active channels in one state were a subset 

of the active channels in another.  In the software 

implementation, a threshold of σ = 0.93 was used as a 

cutoff to determine whether two states were sufficiently 

close to be considered a match for planning purposes.  

This value was tuned empirically and was likely specific 

to the particular system simulated.  

The second strategy used to cope with the large state 

space was to start with an easy task (i.e. success in the 

task could be achieved with a random walk in reasonable 

time) and to incrementally increase the difficulty as the 

robot became more adept.  In this way, the robot began 

the task just outside the border of a familiar region of 

state space.  Each time the robot discovered a path to the 

goal, this resulted in an incremental increase in the size of 

the familiar state space.  Initially, the robot’s position was 

set such that it was prepared to grasp the target and only 

needed to close its grippers.  Each time the robot 

successfully grasped the target, the task was reset.  Once 

the robot was able to successfully grasp the target more 

than five times in 100 moves, the initial distance from the 

target was increased.  This process continued until the 

maximum initial distance was achieved (shown in Fig. 3a, 

first panel).   

After a certain number of movements without 

reaching the goal (in this case, 10), the task was reset, and 

the arm was re-initialized to a starting position as 

described above.  This prevented the robot from spending 

large amounts of time in the expanses of state space that 

were far from the goal. 

 

II.C.2. Task Progress 

 

The initial starting position was characterized by a 

quantity called “progress,” which ranged from 0 (at the 

closest starting position) to 100 (at the maximum initial 



distance).  The heuristic by which progress is modified is 

given by Eq. 2. 

 

))2,(min(ˆ
tts nnnpp −+= α   (2) 

 

In Eq. 2, p̂ is the new progress value, p is the most 

recent progress value, ns is the number of successful 

target reaches in the last 100 movements, nt is a constant 

threshold value, and α is a constant adaptation rate.  In 

this example, an nt of 5, and an α of 0.0025 produced 

well-behaved, largely monotonic increases in p, but these 

values are likely to be specific to this application and may 

require adjustment for others.  The effect of )2,min( ts nn  

was to put a ceiling on the rate of change of p, preventing 

large jumps into uncharted regions of the state space. 

The initial starting position described by p was used 

as an upper bound; it was the maximum distance that the 

robot could use for an initial position at each task reset.  

The actual starting position was randomly selected from 

the positions corresponding to a uniform distribution over 

the interval [0, p], often starting the robot within a 

familiar region of the state space.  This allowed 

knowledge of the familiar portion of the state space to be 

continually refined and renewed. 

Two additional sources of stochastic variation 

ensured that the state space was appropriately explored in 

the neighborhood relevant to the task.  Positional 

variation in both the target and the robot joints were tied 

to p, that is, the magnitude of the variation was 0 when p 

= 0 and maximal when p = 100.  The maximum 

magnitudes of these positional variations were π/4000 

radians in the robot joints and 20 cm in the x- and y- 

positions of the target.  The variations in joint position 

provided only a slight positional jitter.  The target position 

variations were large enough to change the nature of the 

task.  

 

III. RESULTS 

 

Initially, the simulated PowerCube arm moved 

randomly, in an exploratory fashion.  Its sequence library 

was empty, as it had no previous experience.  The S-

Learning algorithm had no basis upon which to form 

plans for achieving its goal of grasping the target.  

Typically, after resetting 5-20 times, the robot finally 

discovered a sequence of movements that allowed it to 

grasp the target.  It repeated this, subject to the stochastic 

variation inherent in its motor commands, until its task 

progress was increased, pushing the robot’s initial 

position out into an unfamiliar portion of the state space.  

Again, the robot made random movements until it got 

sufficiently close to a familiar position and was able to 

reach the target again.  This process repeated until the 

robot was able to reach the target 5 times in 100 moves at 

a task progress, p, of 100.  A well-behaving reaching 

movement from a fully-trained robot is contrasted with 

random movements in Fig. 3. 

Early in learning task progress increased relatively 

rapidly.  Then, later in the process, it slowed 

considerably. (Fig. 4)  This illustrates the increase in 

difficulty with increased progress, attributable to 

increased uncertainty in the robot’s initial position, the 

target position, and the magnitude of movement 

commands.  As task progress increased, the magnitude of 

variation in the robot’s initial position increased as well.  

This occasionally resulted in the robot starting in 

previously unvisited portions of the state space, requiring 

additional learning time to reach the goal.   

Increases in the magnitude of target position variation 

resulted in a dramatic increase in task complexity.  The 

robot was, in effect, being presented with a family of 

tasks rather than just one.  Without target position 

variation, vision information (the majority of the sensory 

input) would have been superfluous and could have been 

be ignored.  However, when target position was varied, 

vision information needed to be incorporated and 

correctly applied to allow successful completion of the 

task.   

Finally, as longer sequences of movements were 

required to reach the target, the cumulative stochastic 

variation in those movements had a greater chance of 

causing significant deviation from the desired end 

position.  While this was helpful in exploring the local 

state space, it presented one more challenge to the 

efficiency of the task performance. 

Often, the robot was unable to reach the target 5 

times within 100 movements.  In these cases p was 

decremented according to Eq. 2.  The alternating 

incrementing and decrementing of p resulted in a jitter 

that can be seen superimposed on the general upward 

progression of p. 

The training time required to reach p = 100 for the 

first time was approximately 280,000 movements, 

although improvements in performance were still 

apparent through 500,000 movements.   

 

IV. DISCUSSION 

 

The simulation presented here demonstrated the S-

Learning algorithm controlling a complex robotic arm to 

achieve a specific task.  The algorithm did not use any 

information about the environment, or the nature of the 

goal, or the size, range, or topology of the robot.  It 

contained no Cartesian representation of its workspace, no 

explicit representation of joint angles, and no calibration 

or interpretation of its rudimentary vision pixels.  It 

learned the relation between all these through self-

experimentation or “playing” in its environment.   

 



 

 
 

Fig. 4. Progress of the robot performance over time.  

“Progress,” as shown here, represents the average 

distance from the target at which the arm will begin the 

task.  Initially, the arm was constrained to begin the task 

very near the target, but as it achieved some success it is 

gradually started further away.  The maximal starting 

distance, corresponding to progress of 100, is the starting 

position shown in the first panel of Fig. 3a. 

 

The training time shown of about one-half million 

moves is not out of line with training time for skilled 

human movements.  Each attempt at the target consisted 

of as many as ten moves, meaning that approximately 

100,000 separate attempts on the target were made.  This 

compares favorably with the number of repetitions it takes 

for humans to learn a task well.  For example, significant 

improvement in cigar-rolling performance is observed, 

even after the one millionth cigar.
12
 

S-Learning is an extremely general learning approach.  

The same S-Learning and BECCA algorithm shown here 

could have been applied to stabilizing an inverted 

pendulum, learning to grasp with a many degree-of-

freedom robotic hand, or steering an unmanned vehicle.  

As long as the state contains appropriate sensor 

information and the system has adequate actuation, S-

Learning can be used to learn its behavior, store it in  

 

 

 

Fig. 3.  Video frames from the animations of a) novice or 

“newborn” reaching performance and b) experienced 

reaching performance.  In novice reaching, there was no 

experience (i.e. no sequences stored in the S-Learning 

Engine) to direct the arm to the target or to aid in the 

interpretation of sensory inputs.  After a body of 

experience had been amassed, sequences linking the 

initial state to the goal state was used to plan a path 

through state space to the target.  



memory, and recall it for use in control.  Many other 

methods have been used to control seven degree-of-

freedom robots; it is not a new control problem.  The 

significance of S-Learning accomplishing the task is that 

it did so without knowing a priori how to interpret any of 

its sensor data or how to reach its goal. 

While S-Learning is in most respects a very general 

tool, there are several parameters that were specifically 

adjusted to produce desirable performance.  In addition to 

the constants identified in the description of the 

simulation, the selection and quantization of sensory data 

was found to be critical to the algorithm’s performance.  

Using irrelevant sensory information can artificially 

increase the dimensionality of the state space and dilute 

the algorithm’s ability to identify similar states.  

Quantizing sensory data too finely makes the state space 

unnecessarily large.  Quantizing sensor data too coarsely 

can prevent the algorithm from distinguishing between 

qualitatively different states.  While the underlying 

algorithm of S-Learning remains broadly applicable, 

addressing a number of diverse applications, its 

application must be engineered to a certain extent, fitting 

it to the specific application at hand.  This combination of 

general and optimized tools is found in human 

neurophysiology as well: brains are extremely general in 

their capabilities and show remarkable plasticity, while 

the structure, sensitivity, and distribution of sensory 

neurons appears to be highly optimized.  In future work it 

may be feasible for S-Learning to implement evolutionary 

algorithms to optimize the implementation-specific 

parameters, modeling not just its ontologic development, 

but also its phylogentic development on biological 

processes. 

By basing its function on observed 

psychophsyiology, S-Learning is able to recreate some of 

the salient features and strengths of human motor 

behavior.  This paper has demonstrated a simulation of S-

learning in a reaching task.  However, the general nature 

of the algorithm suggests that it may also be capable of 

solving more complex motor control problems, including 

grasp, bimanual manipulation, visual tracking, balance, 

and bipedal locomotion.  The absence of explicit models 

makes S-Learning robust to changes in the environment 

and changes in robotic hardware, such as sensor and 

actuator failures, that are likely to occur in emergency 

situations.  
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